equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/




renormalização é um conjunto de técnicas utilizadas para eliminar os infinitos que aparecem em alguns cálculos em Teoria Quântica de Campos.[1] Na mecânica estatística dos campos[2] e na teoria de estruturas geométricas auto-similares,[3] a renormalização é usada para lidar com os infinitos que surgem nas quantidades calculadas, alterando valores dessas quantidades para compensar os efeitos das suas auto-interações. Inicialmente vista como um procedimento suspeito e provisório por alguns de seus criadores, a renormalização foi posteriormente considerada uma ferramenta importante e auto-consistente em vários campos da física e da matemática. A renormalização é distinta da outra técnica para controlar os infinitos, regularização, que assume a existência de uma nova física desconhecida em novas escalas.[4]

Renormalização em EDQ

Em Lagrangeano de EDQ,



equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/


Os campos e a constante de acoplamento são realmente quantidades "cruas", por isso, o índice B acima. Convencionalmente, as quantidades cruas são escritas de modo que os termos lagrangianos correspondentes sejam múltiplos dos renormalizados:



equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/


Teoria de gauge e Identidade de Ward-Takahashi[5][6] implicam que podemos renormalizar os dois termos da parte derivada covariante  juntos[7], que é o que aconteceu para Z2, é o mesmo com Z1.[8]




Na mecânica quântica, o spin é uma propriedade intrínseca de todas as partículas elementares.[1] Os férmions têm spin semi-inteiro e partículas de spin-½ constituem um subconjunto importante de tais férmions. Todos os férmions elementares conhecidos têm spin-½.[2] O estado quântico de uma partícula de spin-½ pode ser descrito por um vetor de valores complexos com dois componentes chamados de espinores.[3]

Descrição matemática

estado quântico de uma partícula de spin-½ pode ser descrito por um vetor de valor complexo com dois componentes chamados: um espinor. Estados observáveis das partículas são então encontrada pelos spin operadores, SxSy e Sz, e o spin operador total, "S". Quando os espinores são usados para descrever os estados quânticos, os três spins operadores (SxSy e Sz), podem ser descritos por matrizes 2x2 chamada matrizes de Pauli cujos autovalores são ±ħ2.[4]

Por exemplo, a projeção do operador de spin Sz afeta uma medição da rotação na direção z.



equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/


Os dois autovalores de Sz, ±ħ2, então correspondem aos seguintes auto espinores[5]:



equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/


Esses vetores formam uma base completa para o espaço de Hilbert descrevendo a partícula spin-½.[6] Assim, combinações lineares destes dois estados podem representar todos os possíveis estados do spin, inclusive na direções x e y.

Os operadores escada são:



equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/


Desde de que S±=Sx±iSySx=12(S++S-), e Sy=12i(S+-S-). Então:



equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/




equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/


Seus auto-espinores normalizados podem ser encontrados na forma habitual. Para Sx, eles são:



equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/


Para Sy, eles são:



equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/




equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/


Comentários

Postagens mais visitadas deste blog