Em física, termodinâmica, química, físico-química e física da matéria condensada, um ponto crítico, também chamado de estado crítico, ocorre sob condições (tais como valores específicos de temperatura, pressão ou composição) no qual não existem limites de fase. Existem vários tipos de pontos críticos, incluindo pontos críticos líquido-vapor e líquido-líquido.[1][2]
Substâncias puras: ponto crítico líquido-vapor
O "ponto crítico" é por vezes usado para denotar o ponto especificamente vapor-líquido crítico de um material, a partir do qual a distinção entre fase a líquida e gasosa não existe.
O ponto crítico de vapor-líquido em um diagrama de fases pressão-temperatura está no extremo de alta temperatura do limite de fase líquido-gás. A linha pontilhada verde mostra o comportamento anômalo da água.[3]
Como se mostra no diagrama de fases para a direita, isto é o ponto em que a fronteira entre a fase líquida e gasosa termina. Em água, o ponto crítico ocorre em cerca de 647 K. (374 ° C; 705 ° F) e 22,064 MPa (218 atm)
À medida que a substância se aproxima da temperatura crítica, as propriedades da sua fases gasosa e líquida convergem, resultando em apenas uma fase no ponto crítico: um fluido supercrítico homogêneo. O calor de vaporização é zero no ponto crítico e para além dele, por isso não existe distinção entre as duas fases. No diagrama de Pressão-temperatura, o ponto em que a temperatura crítica e pressão crítica satisfazer é chamado de ponto crítico da substância. Acima da temperatura crítica, um líquido não pode ser formada por um aumento da pressão, apesar de um sólido poder ser formado sob uma pressão suficiente. A pressão crítica é a pressão de vapor, à temperatura crítica. O volume crítico é o volume molar de uma mole do material a uma temperatura e pressão críticas.
Propriedades críticas variam de material para material, e para muitas substâncias puras estão prontamente disponíveis na literatura. No entanto, a obtenção de propriedades críticas para misturas é mais desafiador.
Definição matemática
No caso das substâncias puras, há um ponto de inflexão na curva isotérmica crítica (linha de temperatura constante) com um diagrama de Pressão-Volume. Isto significa que, no ponto crítico: [4][5][6]
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
Isto é, as primeira e segunda derivadas parciais da pressão p no que diz respeito ao volume V são ambos zero, com as derivadas parciais avaliados em temperatura constante T. Esta relação pode ser usada para avaliar dois parâmetros de uma equação de estado em termos das propriedades críticas, tais como os parâmetros a e b na equação de van der Waals.[4]
Às vezes um conjunto de propriedades reduzidas é definida em termos das propriedades importantes, isto é:[7]
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
onde é a temperatura reduzida, é a pressão reduzida, é a redução do volume, e é a constante universal dos gases.
Proposta pelo físico estadunidense Josiah Willard Gibbs, a Regra das Fases de Gibbs apresenta um critério para a determinação das fases que coexistirão em um sistema em equilíbrio num diagrama de fase.[1]
Definição
A regra das fases de Gibbs é expressa pela equação
- ,
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
em que P é o número de fases presentes, F é o número de graus de liberdade, ou o número de variáveis que podem ser controladas externamente, e que devem ser especificadas para definir por completo o estado de um sistema. O parâmetro C representa o número de componentes e N é o número de variáveis não relacionadas à composição. Como muitas vezes essas variáveis são a temperatura e a pressão, é comum a equação aparecer como:
- .
Na física e na ciência dos materiais, a Temperatura de Curie (Tc), ou a temperatura no Ponto de Curie, é a temperatura na qual o magnetismo permanente de um material se torna um magnetismo induzido. A força do magnetismo é determinada pelo momento magnético.
A temperatura de Curie é o ponto crítico onde o momento magnético intrínseco do material muda de direção. Momentos magnéticos são momentos de dipolo permanentes que dentro do átomo são criados a partir do momento angular e do spin dos elétrons. Materiais tem diferentes estruturas de momentos magnéticos intrínsecos que variam com a mudança de temperatura.
Magnetismo permanente é causado pelo alinhamento dos momentos magnéticos e magnetismo induzido é criado quando momentos magnéticos desordenados são forçados a se alinhar em um campo magnético requerido. Por exemplo, os momentos magnéticos ordenados (ferromagnético, Figura 1) mudam e se tornam desordenados (paramagnético, Figura 2) na Temperatura de Curie.
Altas temperaturas fazem a magnetização espontânea de imãs mais fracos ocorrer apenas na Temperatura de Curie. Susceptibilidade magnética só ocorre acima da Temperatura de Curie e pode ser calculada pela Lei de Curie-Weiss que é derivada da Lei de Curie.
Em analogia aos materiais ferromagnéticos e paramagnéticos, a temperatura de Curie pode ser usada para descrever a temperatura onde polarização eletrostática espontânea do material se torna um polarização eletrostática induzida ou o contrário caso a temperatura seja reduzida abaixo da Temperatura de Curie.
A Temperatura de Curie recebeu esse nome depois que Pierre Curie mostrou que o magnetismo se perde depois de alcançar uma temperatura crítica.[1]
equação tensorial de sistema dinâmico estatístico quântico
1 / / / /
[DR] = .= G
+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
/
Temperatura Curie dos Materiais[2][3][4] Material Temperatura
de Curie (°C)Ferro (Fe) 770 Cobalto (Co) 1127 Níquel (Ni) 354 Gadolínio (Gd) 19 Disprósio (Dy) -185 MnBi 357 MnSb 314 CrO2 113 MnAs 45 EuO -204 Óxido férrico (Fe2O3) 675 Óxido de ferro(II,III) (FeOFe2O3) 585 NiOFe2O3 585 CuOFe2O3 455 MgOFe2O3 440 MnOFe2O3 300 Y3Fe5O12 287 Ímã de neodímio 310-400 Alnico 700-860 Imã Samário-Cobre 720-800 Ferrite 450 Lei de Curie-Weiss
A Lei de Curie-Weiss é uma versão adaptada da Lei de Curie.
A Lei de Curie-Weiss é um modelo simples derivado da aproximação do campo médio, isso significa que funciona bem quando a temperatura do material,T, é muito maior que sua correspondente Temperatura de Curie,Tc, logo T >> Tc; Entretanto falha para descrever a susceptibilidade magnética, χ, na proximidade imediata do ponto de Curie por causa das flutuações locais entre os átomos.[5]
Ambas Lei de Curie e Lei de Curie-Weiss não servem quando T< Tc.
Lei de Curie para material paramagnético:[6]
equação tensorial de sistema dinâmico estatístico quântico
1 / / / /
[DR] = .= G
+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
/
Definition χ a susceptibilidade magnética; influência de um campo magnético requerido no material M momento magnético por unidade de volume H o campo magnético macroscópico B o campo magnético C a Constante Curie específica do material Aplicações
- Estudo do paleo-magnetismo terrestre
- Desmagnetização de materiais
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
Comentários
Postar um comentário